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Abst_.act---A pic_clcctric transducor (PZT) is cN_4dble of
providing _ motion if" controlled correctly and could
provide • replacom_nt for traditional heavy and LarKs_rvo
systems using mot,rs. Thlz paper focuses on • genetic
model z_ference adaptive control technique (C_4_AC) for •
PZT which is movkt_ • mirror where the _al is to keep the
mirror velocity constant. Genetic Aigorithaw (GAs) are an
intmgral start of the G_C techn|qtm act/rig as the march
engine for an optimal PID controller.

Two methods arm suI_estod to control the actuator in this
research. The _rat one is to ehanKe the PI]D I_rKrn_ers
and the othar [_ to add an additional rofm-qmeeinput in the

. system. The simulation results of then two ma_hoclJ are
compared.

Simulated Anne4Lling (SA) Ls ai_o used to solve thin prob-
lem. Simulation rmults of GAs x_td SA as_ eompas_d af-

ter JJmul_ttion. CA$ show the b_tt result accordinjg to the

simulation mutts. The entire model is designed _ing the
]vf_thworks' $1mulink tool.

J_e_wo_---GAs, GMRAC, PID, PZT, SimuUnk

[. INTRODUCTION

Most linear actuators are comprised of motors which are

very he;vy, but are capable of providing stable linear mo-
tion over long periods of time. Although the PZT actuator

can provide a highly controllable linear motion, the inher-
ent characteristics of the material can change due to aging

and temperature. Therefore, an adaptive control technique

is desirable to compensate for these changes. The GMRAC

technique which incorp_)ra_es genetic algorithn_ wL_ used
to set the PID parameters and thus control the velocity

movement of a mirror bring driven by the PZT.

Genetic Algorithms (GAs) have been useful in solving

various kinds of problems. GAs are primarily used to solve
optimization problems which have a complex, nonlinear

search space. The design automation for controllers is one

Application for GAs. There ar_ several instances where
GA_ have been applied to _ type of problem: Lee and

Takagi designed a fuzzy system using GAs for the inverted

pendulum [_]; Mich_lewicz used GAs for solvin_ the opti-

mal control problem [7]; and D_, Goldberg, Maday and
Dorey used GAs for system identification [1, 6}.

In this research, two di_erent optimization approaches

are proposed. The first is to change the PID gain param-
eters and the other is to adjus_ an additional input value.

The pedormanc_ of the two different methods are coin-

pared and simulated trine•ling (SA) is also used to compare
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Figure 1, PZT System

the performance, with GA_. Ac_ording to the simulation

result.% the GA outperformed the other methods. Spccif- :

ically, the first spproach using GAs for PID gain control •
had the best result.

II. PZT SYSTEM

The PZT system described here consist._ of stacks of
piezoelectric _ructure_ which were invented at NASA's

Langley Research Center. When an input voltage is applied

to the PZT, a force is exerted by the piezo_ectrie which

delivers a displacement to the attached mirror. The_ de-

vices can be. pheed mec.ha.,dc&lly in _zics and connected
electrically in parallel The motion of each element adds in

pha_ to produce the totalmotion which k almost equiv-
alent to the sum of motion of each element. The system

configurelio_ is shown in Figure 1 [10]. The real photo

image for this system is tn Figure 2.

In this sim_a_ion, the PZT plant system w&q modeled
in Simu]i_. The entire system model is shown in Figur_ 3.

III. GAs _.'_D GMRAC

According to evolution theory, nature win adapt to a

changing environment in an efficient manner. The infor-

mati0n about each individual is contained in its genes, and

the processes of natural selection and progre_ive breed-
tug build a strong population [2, 3]. Natural selection en-

sures that the genes from a strong individual are present

in Fje_ter numbers in the next generation than those from
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Figure 3. PZ'I' Controller

a weak individual. After a number of generations, this

process caa combine stronger genes to produce aa even

stronger individual whose genes wiU strengthen the popu-
lation. The O¢_e_ic Algorithm., (GAs) are based on thls

natural selection and genetic. They combine survival of
the fittest among string structures with an information ex-

change to form search algorithms with some of the innova-

tive flair of human sea_ch. In every genention, • new set

of strings is created from pieces of the old. GAs e_ciently
exploit historical information to determine a nov search

point with improved performance [4].
Complex structures can be coded by using simple rep-

resentations such as bit strings {4]. These act like natural
genes. A number of these strings or individuals form the

population of GAs. In the next step, m,e.e_iv_ gentra-

tlons of individuals will be built by x_ting genetic operators.

These genetic operators are _u_l to make new individuals

Figurs 4. B4udc Procedure of GAs

by combining the genes of other individuah. When this
process is controlled properly, it cam produce a rapid in_-

provement in the overall fitness of the population. This
produces • population of structures that is well-adapted to

the problem. Af_ number of generations, the structures

represent good solutions: The fittest individual should be

an optimal solution. GAs can perform the optimization
process even in large and complicstA,,d .,_arch spaces. The

basic procedure of GAs is shown in Fig_xrc 4. The most

popular method of representing the problem is a biaary bit

string. In this sLfing, we can use either '0' or T as a bit
value. GAs using this method are known as Binarle.Coded

Gen c (BCGA)[s].
Choosing the _ evaluation for GAs Is a very Stupor-

rant factor. The fitness function must be devised for each

problem to be solved. Given a particular string, the fitness

function returns a single numerical _tness'. For many
problems, particularly function optimization, it is obvious
what the fitness function should measure. But this is not

always the case. k is necessary to calculate the fitness of all
individuals in an entire population. Therefore, it is bo.tt_.r

to use as simple a function as possible.

The CMRAC u_es GA._ with the plant model [9]. Re-

osiving plant output and rdexence input information, GAs
sekct the best PiD gains at each time step from the candi-

date populations. It is very important for the adaptation
to occur between one time step and the next, After a set

number of time steps, a new output is generated using the

best set of PID gains from the simuhtte time steps. There-
bre, the process may not converge before the output must

be _,t, but a near optimum value is selected for beet per-
formance.

The block diagram for the GMRAC is shown in Figure 5.
GMRAC needs two types of plants, the real system a_d

the plant mode] are needed for the implementation. In
the simulation stage, the PZT stmulink model represents

both systems. A disturbance is used to simulate the real

environment and ad& noise to the syste_n.

9.
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Figttr_ 6- GMRAC Op_rat|on Modulo for PZT Control

IV. GA IMPLEMENTATION

The GMRAC operstion module for the PZT system is
shown in Figure 6. In the stmul&tion, two types of opti-
mization metho& are used. The first one is to find the

optimal set of PID gains. The other is to find an addi-
tions] rderence input to the error signal. The first method

involves finding four gain factors but the _ond method

ju._ needs one value. Therefore, the size of the chromo-

some string is smaller in the second case. The simulation
is performed for both methods. The model of the first case

Figure T. System for PLD Gain Control

ol

Figure 8. GA with PID

is shown in Figure ?. In this model, the GMRAC finds the
best set of PID Kadns a£ each time step. In this simula-

tion, the population size was set to 20. Each gain value is

mapped into one string, and there are four parameter vari-
ables to be optimized: proportional, integral, derivative

and derivative divisor parameters. Each of these gain ele-

ments is assigned • 6 bit value. The method of calculating

the fitness is explained in section V. The crossover oper-

ation and mutation are used as genetic operators, linear
sc_ding is used for preventing early convergence, and elite

pas.clng is used to keep the best string di_ring the entire

procet_.
The detailed block diagram of the GMP, AC module for

the P!D gain optimi_tion is shown in Figure 8. In this
module, the fitness function gives the best fitness values

to the set of PID gains which have the _malle_t di_crcnce

between the rdcrcnce input and the system output.

The second case is shown in Figure 9. In this case, the
• rldttiomd rcfer_ce Input is added to the re_erencc input

part in the original system. The size of string is norm,,dly

_z_dl_ tha_ when USing PID gain control _d thus reaches

the optinufl value much fast. The GMRAC module for

this case is shown in Figure I0.
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Figure 10. QMR_C Module for Additlomd Input

V. SIMULATION RESULT

The environment for simulation is shown in Figure 11.

In Figure 11, there is a subblock for the GMRAC routine.

Two output graphs are shown bottom right side. The sim-
ulstion time and mcthod can be decided by the simulation
menu from the menu bar in the simulator.

Four types of fitne_ functions were used to get the best
result, The definition of each of the fitness functions are as

follows:

• e(t). u_(k + 1). _(k+l), ,_(k) = e(k) - e(k - 1)
• .m ,,e_(k),_ = e(k)

• type 1:P2
• type 2: 50p_ + 500p_

• type 3: 500_
• type 4: 500px + 50p_

• Fitne_ :

The objective is to reduce the error. Therefore, the op-
timization value must have the smallest error. The mini-

mization proble_n is easily converted to the maximization

problem. This minimi_tion problem is changed to the
maximization problem by using the fitness value _._

_Pror"

The definition of each case is summarized in Table I. Cases

I to 8 use the PID gain control. Case numbers which are.

greater than 20 use the additional re_e_ce input control.
Three input sets are used to compare the pcrformance be-
tween these two methods. The input value starts at "0"
and re_hes "1_ at 1 msec in the first case. The first 18

simulation results u_ this step input command. Simula-

tion results with _t fitness function types are shown

in Figure 12. As shown in table l, the noise is not added
in these cases. The next simulations are for additional ref-

erence input control. The same types of fitncss functions

are used in this method, and the results are shown in Fig-
ure 13. The simulation result_ are _dmost the same for both

methods. The fitness typt does not affect the simulation
result in these cases.
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TTpeof Cases
Case 1

C_ 2
Case 3

Case 4

Case 5
Case 6

Case 7

Case S

Case 9
Case 10

Case 21

Case 22

Case 23
Casc 24

Case 25

Case 26
Case 27

Case 28

Fimess Type
fitness I

fitness 2
fitness 3
fitness 4

lie

fime_ 1
fitness 2

fitness 3
fitness 4

No GAs

No GAs

flmcss 1

fitness 2

fitness 3

fitness 4

fitness 1

fitness 2

fitness 3
fime_ 4

Noise

No-noise

No-noise
No-noise

No-noise

With-noise
With-noise

With-noise

With-noise

No-noise
With-noise

No-noise

No-noise
No-noise

No-noise

With-noise

With-noise

With-nobe

With-noise

Table 1. Definition of _ Calm
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Figure I:L Simulation i[Umult (calm 1-4)

The output results of GAs and SA with type 1 fitness

are shown in Figure 14. GAs are not applied to case 9
and noise is not added. The simulated Annealing (SA)

technique was also simulated for comparison using the same
cases. Simulation results where white noise is added to the

syutem are shown in Figure 15.
The second set of simulation uses a different input set.

The input velocity command starts &t value "1" and kecps
this value to the end of simulation. In this case, the white
noise is not used. The noise value starts with uO" at 0 sec

and is changed to "0.1" at 0.15 sec, "-0.l" at 0.2 se¢, and

finally "0_ at 0.35 _c. The algorithm uses the _tness type
1. The simulation result without noke is shown in Fig-

'[.0 ...... "" ............. "_

"%.oo- o._-i o,_, 0.0, o.o, o.
(me)

Figure 18. Simulation lteault (cam 21-94)
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Figure 14. Simelat|on Ite_t (GAs and SA)

ur¢ 16. The results with noise are _hown tn Figure 17. In

this ca_e, the type of fitness function affects the simulation

results slightly. The fitness function type ] provides the
best result when compated aga£nst the othens.

The final aimulation uses a step function as an input

Iflgnal. The result is shown in Figure 18. In the Figurc,

section (A) shows the result for the entire region. Sections
(B),(C), and (D) show detailed r_ults for specified regions

in f_'tion (A). In this simulation, GAs and SA ate used to
solve the problem and four different results emerge from

the simulation. The legend in the graph is explatncd as
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Figure 16. Simulation R_ult without Noise

_0]]ows.

• GA1 - GAs far PID gain c_ntrol.

• GA2 - GAs for additional input control.

• SAI - SA for PID g_tin control.

• SA2 - SA for additional input control.

According to the simulation results, GAs and SA show

better performance than the original PID controller. Specif-

ically, GAs for opti,-v_ PID gain control _dorms the
best.

1.0 _ ......

JO "0" ' " ""
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Figure 17. Simulation ]8_ult with Noise

VI. CONCLUSIONS

GMRAC techniqueshave been shown tooutperform other

ad_ptivec_ntrolmethods forthe controlofs PZT _cttuttor

system. Good controlofPZT systems would enable them

to be used in placeof heavy, noisy motors in a varietyof

•ppl/cations.

According to the slmul&_ionresults_GAs and SA show

better performance than s normal PID controller.Fur-

thermore, GAs for PID gain controlshow the best result

yielding• fastand stableresponse.GAs and a plantmodel

were combined to form the G_flLkC model, Lnd it demon-

stratus good performance in dynamic'Mly controlling the
_ystean with or without noise.
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